If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+80X-38500=0
a = 1; b = 80; c = -38500;
Δ = b2-4ac
Δ = 802-4·1·(-38500)
Δ = 160400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160400}=\sqrt{400*401}=\sqrt{400}*\sqrt{401}=20\sqrt{401}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{401}}{2*1}=\frac{-80-20\sqrt{401}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{401}}{2*1}=\frac{-80+20\sqrt{401}}{2} $
| -14=-7/9v | | 2v-5=-19 | | 3(x+1)=12(1.5x-4) | | 8x+1.2=9x | | −4x+3=19−4x+3=19 | | 4(2-1)=32-3(2a-2) | | (3x-2)(2x+1)=10 | | 6n+5=4n-9 | | 7r-7=6r | | 3=4g−5 | | 20=-8x+4(x+8) | | -3/5(x+3)=-1 | | 3x*2+4x+1=0 | | 5z-3.6=6z | | X+6+x+1=17 | | 18+0.5x^2+2x=7x^2+3x | | X+15+x+5=12 | | 15(60+n)=3(84+n) | | x+6+x-6+3x-5=180 | | 0=3y^2-16y+30 | | y/2-7=5(3-y) | | -9=-4(-2)-7y | | Y=y+18 | | 8y-5=4 | | 3x-2/4=2x+5 | | -11x+47=25 | | x^2-1-2.1x=0 | | 7-56y=654 | | 9x+5-4=20 | | 7−2x6−3=5.2 | | 12x–x–2x–9x+2x=16 | | 3x-42=2x+12 |